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Abstract

We consider the case when it is of interest to study the different states experienced over time by a set of
subjects, focusing on the resulting trajectories as a whole rather than on the occurrence of specific events.
Such situation occurs commonly in a variety of settings, for example in social and biomedical studies.
Model-based approaches, such as multistate models or Hidden Markov models, are being used
increasingly to analyze trajectories and to study their relationships with a set of explanatory variables.
The different assumptions underlying different models typically make the comparison of their
performances difficult. In this work we introduce a novel way to accomplish this task, based on
microsimulation-based predictions. We discuss some criteria to evaluate one model and/or to compare
competing models with respect to their ability to generate trajectories similar to the observed ones.
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Comparing models for sequence data: prediction and
dissimilarities

1. Introduction

We consider the case when for n subjects the activities (or states) experienced over a period of
time are tracked, so that a trajectory, i.e. a finite sequence or ordered collection of states, is
available for each subject. Typically, observation of such trajectories is right censored.

There are many applications when data of this type can be of interest. For example, in sociology,
one may be interested in studying the transition to adulthood of individuals with respect to union
and family formation, or to employment. In health studies, the conditions of individuals are
typically observed over time; in each period, one records whether or not the patient experiences
some focal event such as remission, occurrence of a disease, various degrees of severity of a
disease, complications, or death. In

Objects of interest typically are the event of experiencing a state, the time of occurrence or
transition into a state, or the length of the permanence in a state (see, e.g., Lawless, 2003).

The states that an individual may experience can take different forms. For instance, they can be
recurring (when one state can be visited more than once), transient (when a subsequent
transition to another state may occur), or absorbing (when no transitions to other states are
possible after having experienced that state). Here we consider state trajectories that include all
of these kinds.

Adopting a “holistic” approach, we will focus on the evolution of the trajectory as a whole, rather
than just on the timing or occurrence of specific events. We are interested in studying the
relationships that may exist between the trajectories and a set of covariates, a problem that is
of course relevant in many contexts. There is increasing attention and interest in the literature
on the use of model-based approached at this aim. For example, multi-state models are being
used more and more to describe the occurrence of events of different kinds over time, and can
prove useful to identify relevant covariates and/or to assess the effects of covariates on the
evolution of the trajectories. For a review of multi-state models and their implementation one
may refer to Putter et al. (2007) or Beyersmann et al. (2012), who consider models for the hazard
of transitioning to specific states within the context of multi-state models with no recurrent

events. The class of multi-state models is broad, and includes a number of popular models. For
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example, the case of competing risks, focused on the transition from one initial state to several
mutually exclusive absorbing states, is closely related to a multi-state model. Similarly, traditional
survival analysis can be regarded as a special case of a multi-state model, with attention limited
to only one absorbing state beyond the initial one.

Another popular approach is based on latent Markov models (see e.g. Vermunt et al., 2008;
Bartolucci et al., 2013), which assume that underlying the observed trajectories there exists a
latent (hidden) process, described by a Markov chain with a finite number of states. In such a
framework, the latent process is indeed a multi-state model, and the observed states are treated
as “realizations” of the latent ones, and they are assumed to be independent conditionally on
the sequence of the hidden states.

Irrespective of the approach followed to study the trajectories’ evolution, the assessment of the
results and, possibly, model selection are usually based upon criteria (for example, AIC of BIC)
that depend on the hypothesized data generating process. The different assumptions underlying
different models typically make the comparison of their results difficult if not impossible.
Arelated, crucial issue is to evaluate the models’ performance with respect to the original object
of interest, which is the set of the observed trajectories.

Here, we propose to use simulated trajectories to study and compare the in-sample and the out-
of-sample predictive power of competing models, that is their ability to generate trajectories
that are “similar” to the observed ones. Our aim is to introduce criteria to suitably compare
collections of dissimilarities computed across observed and model-generated sequences.

We explore a few distance-based methods to assess the relative merits of competing models,
when applied to the same data. Specifically, we refer to data collected as part of the Fertility and
Family Surveys (FFS), conducted in the 1990’s in selected member States of the United Nations
Economic Commission for Europe (UNECE, www.unece.org/pau/ffs/ffs.htm; Latten and De
Graaf, 1997). In Section 2 we describe the data, with specific reference to the holistic approach
to the analysis of life courses known in the literature as Sequence Analysis (SA). These data were
analyzed in Lombardi (2012) and in Bonetti et al. (2013) using two alternative models for the
probability of transitioning from one state to another while accounting for a set of covariates,
namely the Multi-State Life Table (MSLT) approach (Cai et al. 2006, 2010) and the State Change
model (SCM) (Bonetti et al., 2013). These two event history models are briefly described in
Section 3. For the sake of completeness, in that section we also provide a basic illustration of

latent Markov models, which may also be used to study trajectories.



In Section 4 we introduce some proposals to compare the performance of two or more
competing models, and in Section 5 we illustrate their use to assess the relative goodness of fit
through the predictive accuracy of models applied to the FFS data. For the sake of synthesis, we

focus on the two models SCM and MSLT. We close with some comments in Section 6.

2. The Fertility and Family Survey data

We consider data arising from the Fertility and Family Surveys (FFS) study, conducted in the
1990s in selected member States of the United Nations Economic Commission for Europe (Latten
and De Graaf, 1997). The same data were analyzed in Bonetti et al. (2013) and in Lombardi
(2012), who focused on 1897 women from the Netherlands born between 1953 and 1962. In
particular, the interest was on women’s childbearing and family formation patterns and on their
relationships with a set of baseline covariates. For each woman, the ordered collection of the
monthly states experienced between 18 and 30 years of age was considered, summarized by a
sequence s = (Sy, ..., St), where T = 144 months for all women, s; € {1, ..., M} is the state visited
at time t, and M is the number of possible different states.

Specifically, we consider the following states: living without a partner and having no children (N),
married without children (M), in unmarried cohabitation without children (U), single with at least
one child (NC), married with at least one child (MC), and cohabiting and having at least one child
(UC). A compact representation of a woman'’s trajectory can be obtained by listing the visited
states v = (v4, ..., V) (states sequence) and the durations T = (14, ..., T) of the uninterrupted
permanences in each state (durations sequence), with h indicating the observed total number of
states visited. For example, for a woman who lived without a partner for 22 months, then
cohabited for 27 months, then lived as single again for 31 months, and finally married and
remained in that state for 64 more months, one has h =4, v = (N,U,N,M), and Tt =(22,27,31,64).
Although some states can (as in this example) be visited more than once, the “children” state is
absorbing: after the first child is born, the woman cannot return to any of the “no children” states
(deaths of children are not considered). Note that the last duration might be right-censored.
The focus is on the association between the sequences and a set of (baseline) categorical socio-
demographic characteristics, namely birth cohort, level of education, religious status, and having
versus not having separated or divorced parents. We also distinguish between the two birth
cohorts 1953-1957 and 1958-1962. Education is based on the years of education received after
the age of 15, and it groups the women into three classes: women who interrupted their studies,
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those who proceeded with at most an additional 3 years of education, and those who received
more than 3 years of additional education. Religion indicates whether a woman declared herself
as being religious or not. Finally, Divorce indicates whether a woman'’s parents are separated or
divorced (at the time of the survey). Note that the survey collected information on women at the
time of the interview, i.e. after the age of 30. As a consequence, the use of Divorce to explain or
predict sequences may be questionable. Given that most parental divorces take place during the
children’s adolescence, however, the assessment of the effect of parents’ being divorced is not
likely to be overly biased. The use of Religion may also be somewhat questionable because of
the possibility of (rare) changes of religious status during one’s life. On the other hand, Education
is a clearly defined baseline variable, as it refers to events that occurred before the age of 18.
For a detailed description of the FFS study and of its main findings we refer to Latten and De

Graaf (1997).

3. The Study of states over time

A problem that typically arises when trying to explain and/or predict trajectories is that the
frequency of each specific trajectory is typically very low. However, some trajectories will be
similar. For instance, two trajectories may differ only by a slight misalignment of experienced
event(s): the two trajectories would then have identical states sequences — for example, in the
FFS study, v1= v5 = (N,U,N,M) — but slightly different durations, say t; =(22,27,31,64) and T,
=(20,27,31,66). Or, they may differ by short spells in different states, so that they would be
almost identical except for the presence of an additional state, as for v;=(N,U,N,M),
v,=(N,U,N,U,M), T4 =(22,27,31,64), and T, =(22,27,2,29,64). These ideas are at the basis of the
techniques and algorithms used in Sequence Analysis, which is now an established approach to
the description of life courses. SA focuses on criteria — generally based upon alignment
algorithms —to measure the dissimilarity between pairs of sequences. Such dissimilarities can be
used in a number of ways, and a typical application consists of the identification of clusters of
individuals who experience similar if not identical trajectories.

Whilst SA aims primarily at identifying the most salient features of the observed trajectories, the
study of the effects of possibly relevant covariates is clearly also quite important.

However, the analysis of the relationship between pairwise dissimilarities and covariates is very
difficult, if not impossible, also due to the structural and constrained inter-relationships that exist
among dissimilarities. Some proposals were introduced in the literature to draw conclusions
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about the impact of covariates on the “structural features” of the trajectories, as described by
clusters. Piccarreta and Billari (2007) extend the ANOVA concepts and the R? criterion to SA, to
assess the extent to which a certain cluster solution accounts for the total sample-heterogeneity
(see Section 4 for more details). Studer et al. (2011) use permutation tests to extend the ANOVA
F-test along such direction. Although this approach allows concluding whether individuals with
different levels of covariates experience “significantly” different trajectories, it does not provide
any specific indication about the relationship between covariates and sequences. Some authors
(see e.g., McVicar and Anyadike-Danes, 2001) propose to use multinomial logistic regression to
relate the probability (or “risk”) of experiencing trajectories in the different clusters to the
explanatory variables, thus allowing one to gain more interpretable results. This approach
provides reliable results only when the clusters are highly homogeneous. Clearly, within-clusters
homogeneity can often be achieved only by increasing the number of clusters, that is the number
of levels taken by the dependent variable in the multinomial model, with a consequent trade-off
between the model’s simplicity and its reliability.

The difficulties implied by the study of the trajectories-covariates relationships led some scholars
to model the evolution of the transitions from one state to another in different periods, as well
as the relationships between such transitions and the available explanatory variables. With no
claim of being exhaustive, in the following we describe some models that may be used in this
direction.

Here we are focusing on data that consist of state transitions in discrete time. Even if transitions
occur continuously, when available data are interval censored a common approach is to treat
time as discrete, provided that the time intervals are sufficiently narrow and that transitions are
not too frequent, so that not too much information is lost. These two conditions are consistent
with the assumptions that: (a) only one transition can happen within each time interval; and (b)
at the beginning of each interval individuals are at risk of experiencing the allowed transitions,
which may occur in correspondence of an unknown point of the time interval (Cai et al., 2010).
The standard approach to modelling the probability P, = Pr(sq, =7|s; =q) of
transitioning from state g to state r between times t and (t + 1) is the generalized multinomial

logistic regression (see, e.g., Agresti, 2002):

10 { Pq—»r (Xt)

= T =1,.,M;r=1,..,(M —1 1
g Pqu(Xt)} O(qr-l_xl: qu q ) y M5 T ) '( ) ( )



where M is the reference state, X; is the vector of explanatory variables at time ¢, and 0,4, =
(otgrs Bgr)T is a vector parameter specific for each departure state, g, and for each of the
(M — 1) arrival states. More parsimonious specifications can be obtained by constraining some
parameters to be equal across some state transitions.

Note that in (1) the probabilities of transitioning across states depend on the past history only
through the current state (and through the possibly time-varying covariate X;). In other words,
the state visited after time t only depends on the state experienced at t. In some cases, it is more
realistic to let the transition probabilities also depend on the permanence in the current state
since the most recent entry in it. The resulting less restrictive models are referred to with
different names, but they are all characterized by the semi-Markov property. Two specific such
models were applied to the FFS data in Lombardi (2012) and in Bonetti et al. (2013).

The first model is the Multi-State Life Table (MSLT) model proposed by Cai et al. (2006, 2010).

The probability of transitioning from state g to state r is modelled as:

10g { Pq—>r (xt)

= oty + X; By + V,d =1,..M:r=1,..,(M—1 (2)
PqHM(Xt)} qr tBT r“t q ( )

where d; is the time spent in the current state up to time t (since the most recent entrance into
it). The duration effect v, is assumed to be specific for the different arrival states, and constant
across the current states. If the current state is absorbing, then the probability of transitioning
to another state is set equal to zero. Notice that the duration effect can enter the model through,
say, polynomial terms, and that it is also possible to allow the duration effect to vary with one or
more covariates by adding interaction terms.

Whilst MSLT adjusts for the time spent in the current state, it does not model durations directly.
An alternative in this direction is the State Change Model (SCM) described in Bonetti et al. (2013).
SCM separately models the time to the next generic transition, and the probability of
transitioning to specific states conditionally on a transition occurring.

Regression models are built for the two components of the model: time-to-event regression
models for the duration, and conditional multinomial regression models to relate the
probabilities of transitioning to the different arrival states to a set of covariates and to the
observed duration up to the transition.

For example, the (discrete) time to the next transition may be assumed to follow a geometric

distribution with a parameter p that depends on the covariates through a logit link:



p(z;) = exp(z] @) [1 + exp(ij(p)]_l, (3)

where z; summarizes the information available when the j-th state is entered, and ¢ is the
vector of parameters. The covariates in z; can be time-varying, and z; may also include the last
state visited before the j-th transition.
As for the probability of transitioning to a specific state r, a variation of the generalized
conditional multinomial regression models is used. Specifically, the probability of transitioning
from state g to state r at the j-th transition, P,_,,.; = Pr(v;,; = r|v; = q), is modelled as:

p exp(x; Bgr)

(X)) = — q=1,..M;r=1,..,(M—=1); r #q (4)
e 1+ Z%:i,miq exp(x}qum)

Note that P,_,,. j is now specific to the j-th transition and not to the time period t (as in Equation
2). Here X; summarizes the information available at the j-th transition — which may or may not
overlap with the set of covariates z; in (3), and that will be allowed to include the permanence
in the state visited prior to the transition (referred to as Tval in Section 5). The probability of

transitioning into the same state, P, is set to zero for every g and j. A possible drawback of

>q,jr
SCM is a large number of parameters to estimate, and this can be mitigated by constraining some
of them to be equal to zero. Relatedly, Bonetti et al. (2013) suggest a preliminary nonparametric
screening procedure to select the most promising explanatory variables.

The main difference between MSLT and SCM is that while the former allows for an effective
description of covariate effects on the transition probabilities, the latter allows for a direct
interpretation of covariate effects on the time-to-event distribution of the time until the next
transition.

Recently, attention has been also devoted to the use of latent Markov models for the analysis of
sequence data. Here we briefly describe two such models, namely the Hidden Markov and the
Mixture Hidden Markov models (HMMs and MHMMs, respectively), which admit as special cases
a number of other specific models.

In a HMM, it is assumed that a latent (hidden) process exists, namely a first-order Markov chain
with a finite number K of states, 6 = (04, ..., 07), 6; € (1, ...,K). The evolution of the Markov
chain is described by the vector of initial probabilities Tty = (14, ..., Tox) T, whose k-th element

Tor, = Pr(oy = k) is the probability to start the sequence with the k-th state, and by the matrix



of the transition probabilities across latent states. The (k,r)-th term of such matrix Il is the
probability of transitioning from the k-th to the r-th state, my_, = Pr(o; = l|lo,_1 = k),
assumed to be constant over time (which results in a homogeneous HMM). By the first-order
Markov assumption, (1, IT) fully characterize the distribution of 6 over time. The sequence of
the observed states, s = (s, ..., S7), with s; € (1,...,M), is regarded as a realization of the
unobservable underlying latent process. It is assumed that the state observed at a given time
point only depends on the concomitant latent state and not on the past ones. The emission
probabilities are arranged in a matrix, ¥, whose (k, m)-th element is the probability of emission
of the m-th observed state from the k-th hidden state. The observed states are assumed to be
independent conditionally on the sequence of the hidden states. Both baseline and time-varying
covariates can be inserted in the model by assuming that the elements of W and possibly those
of 1ty and Il depend (also) on covariates, so that the probability of an observed sequence s is
obtained by integrating over the latent sequences as
K
P(s|x) = . Z P(0y, ..., 57]%) - P(sloy, ..., 07 X)
or=1 (5)
K T T
Y [P(ouxl) ﬂp(otwt_l,xt)] - [1_[ P(selor, xt>] ,
or=1 t=2 t=1

where X = (X4, X;) denotes the set of baseline and time-varying covariates, respectively. Note

K K
o1=10,=1

K K
6121 0221

that the introduction of time-varying covariates may move the latent process away from the
first-order Markov assumption. As remarked in Vermunt et al. (2008), HMMs allow one to
account for autocorrelation through the latent process, as well as for measurement error or
misclassification through the imperfect relationship allowed between latent and observed
states. Importantly, such models can be extended to the case when multiple sequences are
observed for each statistical unit.

To also account for additional heterogeneity, mixture Hidden Markov models can be
constructed, that include an additional latent variable indicating membership to one of several
latent classes. Both the initial probabilities and the probabilities of transitioning from one latent
state to another may be allowed to differ across latent classes.

The models described above can all be estimated via likelihood or Bayesian inference, and they

have different features. The event history models, MSLT and SCM, have the advantage of



accounting for the permanences in the states. Nonetheless, in their original formulation they
cannot be extended to the case when multiple sequences per individual are considered (which
is however not the case in our illustration). In addition, they do not allow for the possible
partitioning of cases in groups not defined by observed covariates. On the other hand, HMMs
and MHMMs introduce an additional layer of complexity that makes the covariate effects more
difficult to interpret. Such additional layer may also contribute to making the parameters weakly
identified when data are sparse.

Our goal here is not to discuss the merits of a specific model or to contrast alternative proposals
from a theoretical point of view. Indeed, our main point is that many possible approaches can
be followed and different models can be built, each with desirable characteristics and possible
drawbacks. The relevant issue is that since alternative models generally rely upon different
assumptions, a fair comparison of their performance is not easy, particularly with respect to their
ability to reproduce and/or predict the complete trajectories. This calls for the use of tools and
criteria to assess the “holistic” quality of the models.

Typically, it is not possible to obtain a univocally defined prediction of the entire trajectory based
on the estimated models’ parameters. However, the models usually allow one to generate, via
micro-simulation, event histories based on the estimated parameters, and conditionally on the
covariates’ values. Our proposal is therefore to evaluate models by comparing these simulated

trajectories with the observed ones, using the methods described in the next section.

4. Comparing model performances: some distance-based proposals

In this section, we offer some criteria to compare the performance of two competing models
with respect to their ability to reproduce or to predict sequences.

Consider the generation via simulation of one or more trajectories for each statistical unit from
a fitted model. Indeed, it seems useful to try and take into account the variability of the
trajectories generated for each subject by generating more sequences, say G, for each individual.
In the following, we indicate by S = (s, ..., S,,) the set of the n observed sequences, by §; =
(8i1, -+, S;ic) the set of G sequences generated from a fitted model for the i-th subject, and by
S = (31, ...,fn) the whole set of the nG generated sequences.

In the following, we describe some criteria that can be used to compare observed and predicted
sequences. This points to the problem of assessing a model’s goodness of fit. Nonetheless, it is

also possible to design simulations to evaluate the predictive ability of a model. Indeed, one may
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split the sample into a training set and a validation set, and use only the former to fit the model.
Based on the estimated model, sequences can then be generated for each case in the validation
set.

We will evaluate a model’s goodness of fit (or predictive ability) by assessing the similarity
between the observed and the predicted trajectories.

A first step along this direction is to compare the features of the observed and predicted
sequences are with respect to the observed frequencies and durations of states in the two
groups. This may be done qualitatively, and possibly conditionally on the values of the
explanatory variables or marginally for a specific level of just one of the covariates.

A more in-depth analysis can be based on assessing the “error” incurred when using a model to
predict/explain sequences. This can be done by evaluating, for each unit, how similar the
corresponding G generated trajectories are to the observed one. To do so, it is necessary to
properly define a measure of the dissimilarity between two sequences. This is a standard
problem in the area of Sequence Analysis, and a variety of proposals have been introduced,
which are extensively discussed and compared elsewhere (see e.g., Studer and Ritschard, 2016).
Clearly, the dissimilarity criterion should be chosen accurately, and sensitivity analyses may be
performed to assess the extent to which the choice of the dissimilarity measure affects the
goodness of fit assessment.

The dissimilarities between the sequence observed for a given case and the corresponding set
of generated sequences can be summarized at the individual level by defining, for example the

quantity

G
1 .
g = Ez A(si, Sig) (6)
g=1

where A(s,w) denotes the dissimilarity between the two sequences s and w. Note that the
collection of dissimilarities A(s;, $;4), for a given observed sequence s; and for g = 1, ..., G,
depends both on the heterogeneity of the generated sequences and on the position of s;
relatively to them. One may therefore choose to alternatively consider &, = A(s;, §;), that is the
individual dissimilarity between s; and a summary of the generated sequences, §;, such as, for
example their medoid. The medoid of a set of sequences is the sequence with the smallest
average dissimilarity from all the others in the group, and it is usually regarded as a reliable

synthesis (see Sheikh et al., 2007; Aassve et al., 2007).
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Two models can be compared based on such prediction errors — €; and/or &; — typically through
summaries of their distributions (i.e., the mean, the standard deviation, the range), possibly
conditionally on the covariates’ levels.

Alternative approaches can be envisioned to exploit the dissimilarities. Indeed, information is
available on the conditional heterogeneity both of the original and of the generated sequences,
and one may wish to evaluate if and to what extent the two sets of sequences are similar.

To do so, one may refer to criteria used in the context of cluster analysis to measure the
dissimilarity between two clusters. For example, one could consider the average-linkage, i.e. the
average of all the pairwise dissimilarities between sequences in the two groups of observed and
generated sequences, or Ward’s-linkage, that is the difference between the heterogeneity
within the whole set of sequences (observed and generated) and the heterogeneities within the
groups of sequences.

In particular, Ward'’s criterion is strongly connected to ANOVA-like measures, as discussed in
Piccarreta and Billari (2007) and in Studer et al. (2011). Specifically, consider two groups of cases,
C; and C,, with sizes n; and n, respectively (in our case the group of observed and generated
sequences). Extending the notions of total sum of squares, T, and within sum of squares, W, to

the case when only pairwise dissimilarities are available, Piccarreta and Billari (2007) consider:

T ! 82
YUY it
2(n +12) i,0€(C,UCy)
W=W; +W, = ! 282+ ! 282
=W 2= o, 7 2n, it
i,feC, i,f€C,

where 6;, = A(s;, sp) is the dissimilarity between two sequences. Since 0 £ W < T, the well-
known R-square and F-statistic can be easily extended to this more general case. When

comparing two groups one obtains:

RZ=1-—
-
__a=-w (7)
W/(n - 2)

The distribution of F is not known, and permutation tests (see, e.g., Edington and Onghena,
2007; Pesarin 2001) can be used to verify the differences between dissimilarities in the two

groups. Studer at al. (2011) study and discuss in depth this extension of the F-test to the
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dissimilarity case. In particular, they conclude that when the chosen dissimilarity criterion cannot
be regarded as a Euclidean distance, then it is convenient to refer to unsquared rather than
squared dissimilarities in the expressions above.

To generalize these ideas, we suggest two additional criteria that refer to the study of the
complete distributions of dissimilarities. Indeed, a first possibility is to consider the entire
distributions of between-sequence dissimilarities, also called interpoint distance distributions
(IDDs). This approach is based on the estimated cumulative distribution function of the
dissimilarities between sequences within a group, or across two groups. Specifically, consider a
distribution Fy taking values in a possibly highly dimensional (as in this case) space Y. Define the
random variable D = A(Y,,Y,) as the dissimilarity between two i.i.d. elements ¥; and Y,
extracted from Fy. The IDD is the distribution F(d) = P(D < d) of D (see, e.g., Bonetti, 2016).
D indicates the “distance” between two randomly selected observations as measured by any
symmetric (non-negative) function of the two observations, and in particular by any dissimilarity
measure that may be relevant for the problem at hand. To estimate F,(d), an i.i.d. sample,

(¥4, ---¥n) can be drawn from Fy, and inference can be based upon the set of the (n) pairwise

2

(dependent) dissimilarities between them. In particular, Bonetti and Pagano (2005) consider the

empirical cumulative density function (ECDF):

2
E(d) = ——— Z 1(8; < d),
n( ) n(n—l)l - ( it )
<i n

where §;, indicates the distance or dissimilarity between the i-th and the #-th sample
observations y; and y,. The ECDF of all the pairwise distances, evaluated at a finite number of
values along the distance axis, has an asymptotic multivariate normal distribution. Indeed, if one
considers a grid of bins-defining points d;, ..., dg along the distance axis, and the vector of the
ECDF is evaluated at the end of each bin, then such vector may be written as F,(d) =
[E,(dy), ..., F,(dg)]. In particular, the comparison between F,(d) and a null hypothesis

distribution for D (say, Fy(d)) can be based on the statistic:
M = [E,(d) = Fo(d)]"E[F,(d) — Fp(d)],

where £ is a generalized inverse of the estimated variance-covariance matrix of E,(d). This
statistic can be regarded as a Mahalanobis distance between the observed and the expected

distribution of the distances discretized to the B bins. While M converges in distribution to a
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chi-squared random variable as n tends to infinity, experience shows that convergence is slow.
For this reason, it is often preferable to use empirical testing routines, such as Monte Carlo or
permutation testing (Bonetti and Pagano, 2005).

Manjourides (2009) extends this approach to the two-samples case, that is the situation when
one wants to test whether two groups of multivariate observations follow the same distribution
by comparing their IDDs. This extension is most relevant here. For two groups C; and C, (of n,
and n, cases respectively), let F9(d) = [EX9(d,), ..., EX“(dp)], where E)(d) is the ECDF
computed using only the subjects in the c-th group , with ¢=1, 2. The statistic to test the null

hypothesis that the distribution of the distances is the same in the two groups is:
= €)) @ ] s @ ) 3
# = |EP ) - EP @) £7[EP @) - E2 (@) (8)

where X7 is the Moore-Penrose generalized inverse of the estimated variance-covariance matrix

¥ of the vector [Fn(l) (d) — Fn(z) (d)]. Inference can be based on the permutation distribution
obtained by repeatedly permuting the group labels of the observations.

Another possibility consists of the application of a Wilcoxon-like test, as first suggested in Mosler
(2002). The idea is to contrast the within-group dissimilarities (relative to sequences in the same

group) to the between-group dissimilarities (computed between sequences belonging to

different groups) with a rank-based test statistic. For the two groups C; and C5, let 6%? (with c=1,
2) denote the intra-sample dissimilarity calculated between two cases in the same group, and

SSI'Z), with i € C; and £ € C,, be the inter-sample dissimilarity calculated for cases belonging to

different groups. After sorting the set that includes all the (T;l) + (Téz) intra-sample and all the

nin, inter-sample dissimilarities in ascending order, and after assigning ranks to these

dissimilarities, the test statistic

7= > R(s7?) (9)

i€C, P€C,

can be defined, where R(Sg’z)) denotes the rank of the dissimilarity SS’Z). If both samples come

from the same distribution, then the generic inter-sample distance 81%‘2) should follow the same
marginal distribution as the generic intra-sample distances, SS) or 6&2,). Mosler (2002) suggested

to reject the null hypothesis when 7 is large. He derived the first two moments of 7, and
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proposed an exact permutation-based non-parametric approach to testing with 77, which is also
based on permuting the group labels of the observations.

The F, M, and T statistics can all be used to compare the dissimilarities of the observed (in-
sample or out-of-sample) and generated sequences (or of sequences generated using competing
models).

Since the performance of a model may differ across the covariate space, it might be also
interesting to evaluate the extent of dissimilarity between observed and generated sequences
corresponding to specific combinations of covariate values —with high enough frequencies — thus
keeping the assessments separated rather than pooled into an overall measure across
covariates’ values. Observe that the calculation of all the dissimilarities involved in the definition
of the statistics can make their calculation cumbersome when the number of simulated
sequences is high. Interestingly, with respect to this point one should consider that since no
model truly holds, as the number of generated sequences increases one should possibly expect
shrinking p-values for all tests when they are applied to the trajectories generated by any model.
It is also important to stress that when covariates are continuous (or discrete with many values)
there may exist just one subject corresponding to a given covariate value. In that case, the only
available dissimilarities for that covariate level become those between the observed trajectory
and the generated trajectories. A possible summary of such a set of dissimilarities is then the

individual prediction error, €; or §;, introduced before.

5. Results: Application to the FFS data

We refer to the criteria described in the previous section to compare models applied to the FFS
data. Since our methods apply to any model that can produce trajectories, for the sake of
simplicity below we focus our illustration on the two simpler models, MSLT and SCM, illustrated
in Section 3.

In both cases, the sparseness of the data (within combinations of covariate values) did not allow
fitting the models with the various “Children” states. Therefore, the three states NC, MC, and
NC, were grouped into a unique absorbing state “C”. Also, since transitions from states with
children to states without children are not allowed, all the parameters regarding these
transitions were set to zero. In the following, attention will be focused on the n = 1852 women
whose initial state was different from “C.”

The marginal frequencies of all transitions in the observed data are shown in Table 1.
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The explanatory variables were Cohort (binary variable indicating whether a woman is in the
younger cohort, 1958-1962), Education (coded with two binary variables, Educ2 and Educ3,
indicating 0-3 years and more than 3 years of additional education after the age of 15), Religion,

and Divorce, as described in Section 2.

Table 1. Frequencies of transitions from row state to column state in the FFS data set

N U M C
N 0 912 920 43
U 178 0 554 48
M 32 8 0 1140

The transition from one state to another at a given moment was allowed to depend on the
previously visited state, on the Age at the time of the transition (second-order polynomial), and
on the time spent in the state visited before the transition (TVal). Note that the latter covariates
change at each visited state.

Table Al in Appendix A reports the maximum likelihood estimates for the MSLT model, whereas
Tables A2 and A3 report results obtained for the duration and for the transition parts of the SCM
model. In both cases, only the variables which turned out to be significant for at least one of the
conditional transition probabilities are reported.

In particular, for the MSLT model a Wald backward elimination procedure led to selecting the
entire set of regressors, including Age? and the duration Tval. For the SCM, the results of the
variable selection procedure yielded for the duration part of the model the covariates Age,
Previous state, and Cohort. For the transition component of the SCM the following covariates
were significant for at least some of the conditional transitional probabilities: Tval (Time spent
in the previous state), Age, Education, Religion, Divorce and Cohort. Note that the overall
interpretation of the effects of the two time-varying covariates Tval and Age is rather
complicated, since they enter both components of the SCM.

Both SCM and MSLT can be used to describe the trajectories’ generating mechanism. We now
contrast their performances by comparing the observed sequences with those generated from
the two models by plugging in the estimated parameter values (reported in Tables Al, A2, and
A3 in Appendix A). For both models, starting from one initial state and conditionally on the

baseline covariate values, we sampled the subsequent evolution of the trajectory from the
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estimated probability distributions implied by each model. This is further explained in Bonetti et
al. (2013) and in Cai et al. (2010). For simplicity, we did not account for the parameter estimators’
sampling variability.

For each observed sequence we generated G = 100 trajectories based on the individual’s
covariate values. The resulting sets of simulations will be indicated below as S and SMSLT),
To define the pairwise dissimilarity measure we used Optimal Matching (OM), an alignment
technique which was originally introduced in molecular biology to study protein or DNA
sequences (Sankoff and Kruskal, 1983), and which was later extended to the study of life courses
in Sociology (Abbott, 1995). In OM attention is focused on the quantification of the effort needed
to transform one sequence into another. Three elementary transformation operations are taken
into account: (i) insertion of a state; (ii) deletion of a state; (iii) substitution of a state with
another. Each operation is assigned a cost, and the dissimilarity is defined as the minimum total
transformation cost from one sequence to the other. Substitution costs may be assigned
subjectively on the basis of a priori knowledge or considerations (see, among the others, McVicar
and Anyadike-Danes, 2002). Alternatively, one may follow a data-driven approach and relate
substitution costs to transition frequencies, so that frequent transitions are less costly than rare
transitions (Rohwer and Potter, 2004). Even if sometimes criticized (see Aisenbrey and Fasang
2010, for an in-depth review of the most relevant criticisms and of alternative proposals), OM
remains the criterion most widely used to measure dissimilarity between trajectories in
Sequence Analysis. Following a standard approach, we set the insertion and the deletion costs
equal to 1, while we chose the substitution cost between two states to be inversely related to
the transition’s frequency (Rohwer and Pétter, 2004).

We start by comparing the features of the observed sequences (S) with those of the simulated
ones (SSCM) and SMSLT)) specifically, we focus on the state sequences (V) in the three sets and
compare the frequencies of the most frequent state sequences, the distribution of the visited
states (irrespective of their duration), and the average duration of each visited state. Results are
shown in Figure 1.

Overall, 5732 states were visited (recall that one state can be visited more than once). The most
visited state is N, followed by M and C, and a similar order is also observed for the states’
durations. The traditional family formation pattern, (N,M,C), is the most frequent state
sequence, even if a relatively high proportion of women experienced cohabitation before

marriage. Moving to the simulated sequences, the MSLT-based sequences appear to be more
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similar to the observed ones than the SCM-based sequences. Actually, in the latter case, the

frequency and the average duration of the state N are larger than for the observed ones, and the

reverse holds for state C. As for the visited states, the most frequent observed sequence is also

the most frequent simulated sequence, (N,M,C). Nonetheless, in the simulated sets some

sequences have a different relevance compared to the sample. For example, SCM overestimates

the relevance of the sequence N, and in general of the sequences including N, whereas it

underestimates the frequency of the sequences including state C. As for MSLT, it slightly

overestimates the relevance of the sequences containing state U.
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Figure 1. Description of sequences in the FFS dataset and in the two simulated datasets

It can also be useful to consider the plot of the transversal state distributions. Figure 2 shows the

distribution of the states for each of the 144 months of observation (note that these plots do not
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describe the transitions from one state to another). The previous considerations are confirmed:
MSLT better resembles the distributions of the states observed in the sample, whereas for SCM
one may observe an overestimation of the relevance of state N, and some underestimation of
state C.

We now move to quantifying the differences in performance of the two models using the
dissimilarities-based criteria described in the previous section. We start by considering the
individual prediction errors, € and &;. To compare MSLT and SMC with respect to these
guantities, in Figure 3 we report the scatterplots of the errors for the two models, together with
selected summaries. From the output it can be noted that SMC appears to perform slightly worse
than MSLT, even if the differences are not so dramatic, particularly as concerns the distance from
the medoid of the simulated sequences. Note that one may also monitor the behavior of the
prediction errors for different levels of covariates, or of their combinations, so as to determine
whether the model/s have specific prediction problems corresponding to specific input values
(see, e.g., Figure B1 in Appendix B, showing the distributions of the errors corresponding to

different covariate levels).
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Figure 2. Transversal state distributions in the FFS dataset and in the two simulated datasets
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300

Monitoring and evaluating the behavior of individual predictions offers insights about possible

extreme differences, and it allows one to draw conclusions about the models’ performances at

the descriptive level. When, as in our case, all the covariates are discrete, a more in depth analysis

can be conducted, aiming at testing the extent of dissimilarity between all the observed

sequences characterized by specific combinations of covariates and the corresponding sets of

simulated sequences. Clearly, this procedure is only suitable when the frequency of the

combination of covariates’ levels is reasonably high, so that inferential results

may ha

ve

sufficient power. Table 2 reports the 5 most frequent combinations of covariate values in our

dataset, characterizing a total of 1175 individuals (63.4% of the sample size).
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Table 2. Most frequent combinations of covariates values

X Cohort Education Religion Divorce Initial state Frequency
X1 53-57 0-3Yrs Yes No N 227
X, 53-57 >3 Yrs Yes No N 247
X3 58-62 0-3Yrs Yes No N 195
X, 58-62 >3 Yrs No No N 177
X5 58-62 >3 Yrs Yes No N 329

Given the relatively large number of sequences available for each selected combination of
covariates values, for each combination X of covariate values in Table 2 we chose a number of
generated sequences coinciding with the number of observed frequencies (reported in the last
column of Table 2), and compared the observed sequences S(x) with the model-based simulated
sequences SEM)(x) and SMSLT (x),

We assess the significance of the observed differences by using the statistics F, M, and T
introduced in Section 4. Following the considerations in Studer et al. (2011), the F statistic
(Equation 7) was calculated based on the dissimilarities rather than on their squared values. As
for the M statistic, the interpoint distance distributions (IDDs) in each set were estimated using
B = 20 bins. To estimate the SCM and to generate sequences from it we used the R
programming language. OMA and sequence analysis were applied using package TraMineR in
R (Gabadinho et al., 2011). For the calculation of the M statistic, the Stata functions mstat
and mtest were used (Tebaldi et al., 2011). The p-values characterizing the test statistics, based
on 1000 permuted samples, are reported in Table 3.

The results in the table confirm that the trajectories generated using the MSLT model tend to be
more similar to the trajectories in the data when compared to the trajectories generated by the
SCM model. Similar conclusions can also be drawn when the Mosler-Wilcoxon T test is used.
Those results are reported in Table 3, which shows that the F statistic is highly sensitive, and
leads to rejection in all cases. As such, this example suggests that it might be less suitable for
goodness-of-fit assessments (when one is interested in comparing generated sequences to
observed sequences) than for model building — when one is interested specifically in comparing
the trajectories generated by two (possibly nested) models.

Table 3 also shows that the M and the T test produce somewhat complementary results, since
they return (non) rejections and different assessments of the evidence against the null

hypothesis for different sets of covariate values.
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It is interesting to observe that the MSLT model uses parameters specific for the different
arrival states, whereas the SCM model uses parameters specific both for the arrival and for the
departure states. In general, one might wonder about the reasons for the better fit of the first
model (at least with respect to some covariate levels). This might be due to the different use of
the durations in the two models. In the MSLT these affect the transitions probabilities at each
time point. Instead, the SCM assumes a simple geometric regression model for the time-to-
next transition, and includes the duration in the part of the model that refers to the conditional
transition probabilities at the time when a transition occurs. Even if this is outside the scope of
this paper, this suggests that evaluating the goodness of fit of the fitted models with our
methods can also be useful to identify possible directions to modify the models to improve

their performance.

Table 3. Tests on the differences between observed and model-based sequences and dissimilarities

Discrepancy analysis: F statistic test results (two-sided permutation p-values)

X1 X, X3 Xy X5
S(x) vs. SGM (x) 0.001 0.001 0.001 0.001 0.001
S(x) vs. SMSLD) (%) 0.032 0.001 0.023 0.003 0.001
SMSLT) yg, §ECM) () 0.001 0.001 0.001 0.001 0.001

Interpoint distances: M statistic test results (two-sided permutation p-values)

X1 X, X3 Xy X5
S(x) vs. SEM)(x) 0.0005 0.0049 0.0006 0.0114 <0.0001
S(x) vs. SIMSLD (%) 0.0008 <0.0001 0.2969 0.1874 0.0004
SMSLT) yg, §(SCM) () <0.0001 <0.0001 <0.0001 0.0270 <0.0001

Mosler-Wilcoxon T test results (two-sided permutation p-values)

X4 X, X3 X4 X5
S(x) vs. SEM (x) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
S(x) vs. SMSLD (x) 0.164 0.002 0.136 0.004 <0.0001
SMSLT) yg, M) (x) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

6. Discussion
Predicting trajectories in their entirety is a difficult task. It requires accounting for the visited

states, their durations, and their ordering, and it is further complicated by the fact that
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trajectories are generally all different one from another, even if possibly only by a slight extent.
In addition, the adoption of a holistic perspective does not allow including time-varying
covariates among the explanatory variables. This has led to an increasing interest towards
models focused on specific aspects of the trajectories, for example transitions and/or durations,
and based upon simplifying assumptions (for example, the first-order Markov property).

We have suggested the use of criteria to understand and to assess whether the simplified and
more readable/interpretable structure arising from such models satisfactorily and properly
describes the primary object of interest, that is the observed trajectories (as it is implicitly
assumed). Such criteria are also useful to compare competing models. Indeed, the assessment
of the results and, possibly, model selection are usually based upon criteria (for example, AIC or
BIC) that depend on the assumed data generating process, and the different assumptions
underlying different models typically make the comparison of their results difficult.

We have introduced two measures of the prediction error incurred for each specific subject. Such
errors can be analyzed graphically, or summarized to obtain a global indicator of performance,
possibly conditionally on specific covariate values, or of their combinations. We have then
discussed three criteria to compare and test the difference between sequences generated by the
models and the observed data, within a combination of goodness of fit and prediction ideas. The
methods may indeed be seen either as part of a strategy for model selection, or as pure
prediction comparison tools.

In the first case, model-generated trajectories are compared to the trajectories that were used
to estimate the models’ parameters. Since the adopted permutation-based inference does not
take that into account, the resulting p-values can be interpreted both as a metric for goodness
of fit and as formal tests of hypotheses. Indeed, they can provide a relative assessment of the
goodness of fit of competing models, and serve as a guide in the model selection process when
non-nested models are used. Our illustration here was based on this in-sample prediction power
approach, and the apparent ability of the proposed distance methods to detect differences
between the two models in the FFS data seems quite encouraging. In the second case, the
competing models may be used to produce trajectories that are compared to observed
trajectories that were not used to estimate the models’ parameters.

The proposed procedures could be used to compare the whole sample to the generated
sequences. Here, we chose to keep the assessments separate rather than pooled across

combinations of (baseline) discrete covariate values with relatively high frequency. The
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comparison of the predictive power of two models for covariate values with low or unit
frequency requires particular care. Indeed, for such cases one would reasonably want to
generate a number of sequences larger than the number of observed sequences.

In general, the p-values of the comparison criteria will depend on such number of simulated
sequences. Since no model truly holds, as the number of simulated sequences increases, one
may expect the tests to become more likely to reject. This would not allow a good comparison
of the performance of the models. Hence, the number of simulated sequences could also be used
as a tuning parameter, that may be changed to allow differences between the performances of
different models to emerge, since the goal is to assess the relative predictive performance of the
models being compared.

As an open issue, one should consider that the proposed criteria provide insights about the
possible discrepancy between observed and simulated sequences, but they do not allow a
substantive “interpretation” or understanding of the possible prediction errors/problems, since
they do not describe in what respects the model-generated sequences differ from the observed
ones.

This can be a problem because, clearly, specific prediction errors might be more serious than
others. It is true, however, that the measures of dissimilarity used in Sequence Analysis typically
penalize some differences more than others, so that hopefully the “most serious” substantial
deviations should be emphasized by a relatively large dissimilarity through the very definition of
the dissimilarity used.

Relatedly, the proposed measures clearly depend upon the chosen measure of dissimilarity. On
the one side, this can be regarded as a limitation, which could possibly be overcome by
performing sensitivity analyses aimed at assessing if and to what extent the dissimilarity measure
affects results and conclusions. The possibly different results that one may obtain with two
different dissimilarities may actually emphasize the features of the sequences that matter the
most when comparing groups of trajectories in a specific application.

On the other hand, if the choice of the dissimilarity does matter — because it captures the
features of the sequences that are deemed to be most relevant by the researcher — then
dissimilarity-based measures allow for a comparison that focuses on such features, thus

incorporating a priori knowledge into the assessment of the performance of the models.
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Appendix A

In this Appendix, we report the maximum likelihood estimates of the MSLT model and of the SCM model
as obtained in Lombardi (2012) and in Bonetti et al. (2013) for the FFS data. In particular, Table Al shows
the maximum likelihood estimates for the MSLT model, and Tables A2 and A3 refer to the duration and
for the transition components of the SCM model. Details of the data, the model selection procedures,
and the interpretation of the results, can be found in the two references.

Table A1. MSLT estimates and p-values. Reprinted with permission from Lombardi (2012)

Transition to N

Parameter Estimate S.E. p-values
Intercept 7.847 0.2126 <0.0001
Previous state =M -11.560 0.2672 <0.0001
Previous state = U —-6.735 0.2501 <0.0001
Tval -0.015 0.0014 <0.0001
Age 0.019 0.0053 0.043
Age? -0.0002 0.00005 0.0004
Educ2 0.261 0.1361 0.055
Educ3 1.086 0.1359 <0.0001
Religion -0.192 0.0833 0.021
Divorce -0.247 0.1559 0.11
Cohort 0.139 0.0786 0.077
Transition to M

Parameter Estimate S.E. p-values
Intercept 3.072 0.1929 <0.0001
Previous state =M 0.637 0.1837 0.0005
Previous state = U 0.847 0.2335 0.0003
Tval -0.006 0.0011 <0.0001
Age 0.012 0.0034 0.0004
Age? —-0.0001 0.00003 <0.0001
Educ2 0.248 0.0985 0.012
Educ3 0.416 0.1003 0.0001
Religion 0.043 0.0619 0.48
Divorce -0.310 0.1141 0.007
Cohort 0.042 0.0591 0.470
Transition to U

Parameter Estimate S.E. p-values
Intercept 2.496 0.2252 <0.0001
Previous state =M -8.554 0.4064 <0.0001
Previous state =U 2.894 0.2386 <0.0001
Tval -0.003 0.0015 0.071
Age 0.023 0.0047 <0.0001
Age? -0.0002 0.00004 <0.0001
Educ2 0.539 0.1510 <0.0004
Educ3 1.202 0.1493 <0.0001
Religion -0.507 0.0855 <0.0001
Divorce -0.036 0.1548 0.82
Cohort 0.354 0.0828 <0.0001
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Table A2. Parameter estimates and p-values for the duration component of the SCM model. Reprinted from Bonetti

et al. (2013; page 897) with permission from Springer

Parameter Estimate S.E. p-value
Intercept -4.329 0.0301 <0.00001
Age -0.012 0.0006 <0.00001
Previous state =M 0.900 0.0410 <0.00001
Previous state = U 1.077 0.0458 <0.00001
Cohort 0.079 0.0300 0.009

Table A3. Parameter estimates and p-values for the transition component of the SCM model. Reprinted from Bonetti

et al. (2013; pages 897 and 898) with permission from Springer

Transition from N to M

Transition from N to U

Parameter Estimate S.E. p-value Estimate S.E. p-value
Intercept 2.799 0.5736 <0.0001 -4.071 0.8806 <0.0001
Tval -0.005 0.0064 0.22 0.013 0.0064 0.02
Age -0.054 0.0080 <0.0001 -0.270 0.0086 0.0009
Educ2 0.319 0.5456 0.28 0.394 0.8540 0.32
Educ3 0.110 0.5274 0.42 1.546 0.8380 0.03
Religion 1.869 0.3674 <0.0001 -0.253 0.3769 0.25
Divorce -2.259 0.4213 <0.0001 0.890 0.5493 0.05
Cohort —-0.145 0.3413 0.34 0.390 0.3711 0.15
Transition from M to N Transition from M to U
Parameter Estimate S.E. p-value Estimate S.E. p-value
Intercept 2.553 0.7213 0.0002 1.652 0.5760 0.002
Tval -0.013 0.0063 0.02 0.005 0.0063 0.22
Age -0.015 0.0057 0.005 -0.010 0.0050 0.02
Educ2 -0.107 0.6485 0.43 0.647 0.5446 0.12
Educ3 0.695 0.6343 0.14 1.201 0.5248 0.01
Religion -0.161 0.3416 0.32 0.672 0.3625 0.03
Divorce -0.515 0.4290 0.11 -1.083} 0.3762 0.002
Cohort —-0.384 0.3557 0.14 0.782 0.3356 0.01
Transition from U to N Transition fromUto M
Parameter Estimate S.E. p-value Estimate S.E. p-value
Intercept —-4.657 1.3044 0.0002 2.932 0.6849 <0.0001
Tval 0.007 0.0136 0.31 -0.018 0.0059 0.001
Age —-0.0003 0.0130 0.49 —-0.008 0.0052 0.06
Educ2 0.567 1.1027 0.30 0.398 0.6048 0.25
Educ3 -1.088 1.3913 0.22 0.819 0.5963 0.08
Religion -0.400 0.7203 0.29 0.101 0.3168 0.38
Divorce -1.086 2.3363 0.32 -1.076 0.4019 0.004
Cohort -0.473 0.7413 0.26 0.062 0.3342 0.43
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Appendix B

Figure B1 shows the distributions of the individuals’ prediction errors corresponding to the different

values of each covariate.
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Figure B1. Distributions of the individual prediction errors, §;, average dissimilarity of the observed

sequence from the simulated ones (top panel) and §;, dissimilarity of the observed sequence from the

medoid of the generated ones (bottom panel) for covariates’ values.
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